There’s much much more to the science of learning …

My smarter instincts tell me to shut up. This will blow over much more quickly if nobody fans the flames. As a rabid young academic I wouldn’t have hesitated to go into battle against outrageous claims and muddle-headed arguments. But the 80s were more turbulent, angrier times in which many academics put the truth (as they saw it) and their ego ahead of politeness and collegiality.

Yesterday’s Australian ran an article under the following headline: UQ’s Pankaj Sah says rigorous trials could revolutionise education”. If it’s not hidden behind Rupert’s paywall, you can find the text here.

Pankaj Sah runs the Science of Learning Research Centre at UQ (University of Queensland) and has recently been appointed as editor-in-chief of a new Nature journal: npj Science of Learning. There are press releases from Nature and UQ to announce the event. If you can’t get behind the paywall then the gist of the story is in the press release.

At this point I should declare an interest and say that 10 years ago I helped set up, and have since been co-directing, Australia’s largest and most successful centre for research in the learning sciences. In 2012-13, with an extraordinarily talented team of researchers from Sydney, Monash, Curtin, Griffith, Charles Sturt, Berkeley and London, we bid in the competition for ARC funding that UQ won. We lost. It happens.

Sharp-eyed readers will have noticed that UQ runs a “Science of Learning Centre” but I described our centre as researching in “the learning sciences”. These phrases – science of learning, learning sciences – have become increasingly popular since the early 90s when Roger Schank, Roy Pea and others set up the Learning Sciences program at Northwestern. There’s been a Journal of the Learning Sciences for nearly 25 years now and there’s a biennial international conference, which we had the honour of hosting in Sydney in 2012. The second edition of the Cambridge Handbook of the Learning Sciences came out a few months ago. Both it, and the very successful 2006 first edition, provide an excellent overview of the field. A few of the centres overseas that specialize in this area call themselves “Science of Learning”; most opt for “Learning Sciences” (which is what the Australian Bureau of Statistics calls this field: FoR 130309 Learning Sciences).

So is there a difference between the “Science of Learning” and the “Learning Sciences” and should anyone care? Outside Oz, I’d say the two terms mean pretty much the same thing. But UQ and Nature seem intent on forcing a difference. And I think this spells trouble.

npj Science of Learning says it will publish: “peer reviewed research into the neurobiology of learning in experimental conditions and in an educational environment”. SoL = neurobiology of learning. In the Australian article and in the UQ press release, SoL appears to mean a combination of neuroscience and controlled trials.

The learning sciences have become a strong and vibrant area because they (a) recognize the complex array of influences on learning (“from neurons to neighborhoods” is the well-polished phrase) and (b) are developing methods that can connect an understanding of complex, emergent phenomena to the design and management of real learning environments. Controlled trials can be part of this story, but we’ve known for some years that what they can tell us about how to assist human learning in the real world is very limited. Some of the reasons for this are well known, and ought to be familiar to anyone running a Science of Learning centre.

In the Australian article, analogies are made with medicine and drug trialing (and of course Rupert’s flagship paper can’t help but talk about “educational fads”, to get the green ink brigade foaming at the mouth…). Here’s the thing:

  1. Yes, a lot of what gets tried in classrooms is not underpinned by good evidence.
  2. There is no good evidence to believe that significant numbers of teachers will read npj Science of Learning: it would be unscientific to assume that they will, or to assume that reading the outcomes of research on the neurobiology of learning will help them shift to evidence-based teaching in their classrooms.
  3. Copying Medicine does NOT mean jumping to the educational equivalent of large-scale, controlled trialing of drugs. Medicine is itself moving away from a “one best drug suits all cases” paradigm, to a more personalized approach in which deep knowledge of a host of patient attributes is needed to optimize treatment. Moreover, there’s much more to recovery and staying well than getting the right drug. How well a person understands their own health, medical conditions, treatments, diet, etc., and how far they are able to act on such knowledge, are keys to well-being. Medicine is learning from Education too.
  4. Moreover, Medicine doesn’t jump straight to large-scale trialing. Medical research involves subtle work on fundamental physiological and other mechanisms – there is a long, complicated path between bench and bedside, and a growing recognition of the need for special processes and personnel to do the translational work.
  5. Just like Medicine, Education needs to get better at translational work. It needs to invent new processes, and develop new specialist jobs, to help translate research evidence into action-oriented knowledge: for teachers, students, parents and journalists. Translational work of this kind needs to fill the void between basic research on mind, brain and learning and sustainable educational improvement. Understanding how to do this is not trivial – it needs research in its own right, and that research is scientific (orderly, well-grounded). Indeed, one might see it as at the core of most research in the learning sciences.

Professor Sah is a distinguished researcher who has developed a profound understanding of the complexities of the physiology of the amygdala and its role in the processing of emotions. In the Australian, he is quoted as saying:

“In animal models, patterns of reinforcement make a pretty big difference. These are things neuro­science has a lot to say about, and it has not really trickled into education at all.”

It ought not to be possible to make such a statement without reference to B. F. Skinner, Behaviourism and Programmed Instruction. Understanding the rise and fall of Skinner’s enterprise, and of other hubristic ventures, is in the DNA of most learning scientists, one might say.

“Sah says that in five or 10 years educationalists could dismiss the approach as harebrained.”

My worry: apart from the loony few who are seduced by the neuromyths, educationalists and educators are dismissing it already. Part of the challenge of the learning sciences is to take a scientific approach to understanding why this is so – and developing, credible, evidence-based strategies for doing something about it. Now.

(By the way, I’m well aware that a significant number of projects being run under the auspices of the ARC Science of Learning Centre are not narrowly neuro. Many of them are just the thing one would expect to find in the portfolio of a broad-based learning sciences research centre anywhere in the world. The conundrum, for me, is why a Science of Learning research centre would run a Science of Learning journal that uses such a narrow definition of the Science of Learning that it would exclude many of the publications emanating from the Centre’s own projects.)

Photo credit: Tim Parker